Literaturverzeichnis
Badenes-Ribera, L., Frias-Navarro, D., Iotti, B., Bonilla-Campos, A.,
& Longobardi, C. (2016). Misconceptions of the p-value among
Chilean and Italian Academic Psychologists.
Frontiers in Psychology, 7. https://www.frontiersin.org/article/10.3389/fpsyg.2016.01247
Bourier, G. (2011). Wahrscheinlichkeitsrechnung und schließende
Statistik: praxisorientierte Einführung mit Aufgaben und Lösungen
(7., aktualisierte Aufl). Gabler.
Bourier, G. (2022). Statistik-übungen: Beschreibende
statistik – wahrscheinlichkeitsrechnung – schließende statistik (7.
Auflage). Springer Gabler.
Briggs, W. M. (2016). Uncertainty: The Soul of
Modeling, Probability &
Statistics. Springer.
Cohen, J. (1992). A power primer. Psychological Bulletin,
112(1), 155–159.
Cummiskey, K., Adams, B., Pleuss, J., Turner, D., Clark, N., &
Watts, K. (2020). Causal Inference in Introductory
Statistics Courses. Journal of Statistics Education,
28(1), 2–8. https://doi.org/10.1080/10691898.2020.1713936
Dablander, F. (2020). An Introduction to Causal
Inference [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/b3fkw
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared
for Bayesian Regression Models. The American
Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other
stories. Cambridge University Press.
Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2020).
Rstanarm: Bayesian applied regression modeling via
Stan. https://mc-stan.org/rstanarm
Henze, N. (2019). Stochastik: Eine Einführung mit Grundzügen der
Maßtheorie: Inkl. zahlreicher Erklärvideos. Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-59563-3
Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E.-J.
(2014). Robust misinterpretation of confidence intervals.
Psychonomic Bulletin & Review, 21(5), 1157–1164.
http://www.ejwagenmakers.com/inpress/HoekstraEtAlPBR.pdf
Huntington-Klein, N. (2022). The effect: An introduction to research
design and causality. CRC Press, Taylor & Francis Group. https://theeffectbook.net/
Jaynes, E. T., & Bretthorst, G. L. (2003). Probability theory:
The logic of science. Cambridge University Press.
Kruschke, J. K. (2018). Rejecting or Accepting Parameter
Values in Bayesian Estimation. Advances in
Methods and Practices in Psychological Science, 1(2),
270–280. https://doi.org/10.1177/2515245918771304
Kurz, S. (2021). Statistical Rethinking with
Brms, Ggplot2, and the Tidyverse:
Second Edition. https://bookdown.org/content/4857/
Lübke, K., Gehrke, M., Horst, J., & Szepannek, G. (2020). Why
We Should Teach Causal Inference: Examples in
Linear Regression with Simulated Data.
Journal of Statistics Education, 1–17. https://doi.org/10.1080/10691898.2020.1752859
Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., & Lüdecke, D.
(2019). Indices of Effect Existence and
Significance in the Bayesian Framework.
Frontiers in Psychology, 10. https://www.frontiersin.org/article/10.3389/fpsyg.2019.02767
McElreath, R. (2020). Statistical rethinking: A
Bayesian course with examples in R and
Stan (2nd ed.). Taylor and Francis, CRC
Press.
Messerli, F. H. (2012). Chocolate Consumption,
Cognitive Function, and Nobel Laureates.
New England Journal of Medicine, 367(16), 1562–1564.
https://doi.org/10.1056/NEJMon1211064
Mittag, H.-J., & Schüller, K. (2020). Statistik: Eine Einführung
mit interaktiven Elementen. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-61912-4
Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for
testing interval null hypotheses. Psychological Methods,
16(4), 406–419. https://doi.org/10.1037/a0024377
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference
in statistics: A primer. Wiley.
Poldrack, R. (2022). Statistical Thinking for the 21st
Century. https://statsthinking21.github.io/statsthinking21-core-site/index.html
Popper, K. (2013). Logik der Forschung (H. Keuth,
Ed.). Akademie Verlag. https://doi.org/10.1524/9783050063782
Rohrer, J. M. (2018). Thinking Clearly About Correlations
and Causation: Graphical Causal Models for
Observational Data. Advances in Methods and Practices
in Psychological Science, 1(1), 27–42. https://doi.org/10.1177/2515245917745629
Suttorp, M. M., Siegerink, B., Jager, K. J., Zoccali, C., & Dekker,
F. W. (2015). Graphical presentation of confounding in directed acyclic
graphs. Nephrology Dialysis Transplantation, 30(9),
1418–1423. https://doi.org/10.1093/ndt/gfu325
Tennant, P. W. G., Murray, E. J., Arnold, K. F., Berrie, L., Fox, M. P.,
Gadd, S. C., Harrison, W. J., Keeble, C., Ranker, L. R., Textor, J.,
Tomova, G. D., Gilthorpe, M. S., & Ellison, G. T. H. (2020). Use of
directed acyclic graphs (DAGs) to identify confounders in
applied health research: Review and recommendations. International
Journal of Epidemiology, 50(2), 620–632. https://doi.org/10.1093/ije/dyaa213
van Kampen, D. (2014). The SSQ model of schizophrenic
prodromal unfolding revised: An analysis of its causal
chains based on the language of directed graphs. European
Psychiatry, 29(7), 437–448. https://doi.org/10.1016/j.eurpsy.2013.11.001
VanderWeele, T. J., & Shpitser, I. (2013). On the definition of a
confounder. Annals of Statistics, 41(1), 196–220. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276366/
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s
Statement on p-Values: Context,
Process, and Purpose. The American
Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108