Literaturverzeichnis

Badenes-Ribera, L., Frias-Navarro, D., Iotti, B., Bonilla-Campos, A., & Longobardi, C. (2016). Misconceptions of the p-value among Chilean and Italian Academic Psychologists. Frontiers in Psychology, 7. https://www.frontiersin.org/article/10.3389/fpsyg.2016.01247
Bourier, G. (2011). Wahrscheinlichkeitsrechnung und schließende Statistik: praxisorientierte Einführung mit Aufgaben und Lösungen (7., aktualisierte Aufl). Gabler.
Bourier, G. (2022). Statistik-übungen: Beschreibende statistik – wahrscheinlichkeitsrechnung – schließende statistik (7. Auflage). Springer Gabler.
Briggs, W. M. (2016). Uncertainty: The Soul of Modeling, Probability & Statistics. Springer.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.
Cummiskey, K., Adams, B., Pleuss, J., Turner, D., Clark, N., & Watts, K. (2020). Causal Inference in Introductory Statistics Courses. Journal of Statistics Education, 28(1), 2–8. https://doi.org/10.1080/10691898.2020.1713936
Dablander, F. (2020). An Introduction to Causal Inference [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/b3fkw
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression Models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other stories. Cambridge University Press.
Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2020). Rstanarm: Bayesian applied regression modeling via Stan. https://mc-stan.org/rstanarm
Henze, N. (2019). Stochastik: Eine Einführung mit Grundzügen der Maßtheorie: Inkl. zahlreicher Erklärvideos. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-59563-3
Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E.-J. (2014). Robust misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21(5), 1157–1164. http://www.ejwagenmakers.com/inpress/HoekstraEtAlPBR.pdf
Huntington-Klein, N. (2022). The effect: An introduction to research design and causality. CRC Press, Taylor & Francis Group. https://theeffectbook.net/
Jaynes, E. T., & Bretthorst, G. L. (2003). Probability theory: The logic of science. Cambridge University Press.
Kruschke, J. K. (2018). Rejecting or Accepting Parameter Values in Bayesian Estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270–280. https://doi.org/10.1177/2515245918771304
Kurz, S. (2021). Statistical Rethinking with Brms, Ggplot2, and the Tidyverse: Second Edition. https://bookdown.org/content/4857/
Lübke, K., Gehrke, M., Horst, J., & Szepannek, G. (2020). Why We Should Teach Causal Inference: Examples in Linear Regression with Simulated Data. Journal of Statistics Education, 1–17. https://doi.org/10.1080/10691898.2020.1752859
Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., & Lüdecke, D. (2019). Indices of Effect Existence and Significance in the Bayesian Framework. Frontiers in Psychology, 10. https://www.frontiersin.org/article/10.3389/fpsyg.2019.02767
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (2nd ed.). Taylor and Francis, CRC Press.
Messerli, F. H. (2012). Chocolate Consumption, Cognitive Function, and Nobel Laureates. New England Journal of Medicine, 367(16), 1562–1564. https://doi.org/10.1056/NEJMon1211064
Mittag, H.-J., & Schüller, K. (2020). Statistik: Eine Einführung mit interaktiven Elementen. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-61912-4
Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hypotheses. Psychological Methods, 16(4), 406–419. https://doi.org/10.1037/a0024377
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.
Poldrack, R. (2022). Statistical Thinking for the 21st Century. https://statsthinking21.github.io/statsthinking21-core-site/index.html
Popper, K. (2013). Logik der Forschung (H. Keuth, Ed.). Akademie Verlag. https://doi.org/10.1524/9783050063782
Rohrer, J. M. (2018). Thinking Clearly About Correlations and Causation: Graphical Causal Models for Observational Data. Advances in Methods and Practices in Psychological Science, 1(1), 27–42. https://doi.org/10.1177/2515245917745629
Suttorp, M. M., Siegerink, B., Jager, K. J., Zoccali, C., & Dekker, F. W. (2015). Graphical presentation of confounding in directed acyclic graphs. Nephrology Dialysis Transplantation, 30(9), 1418–1423. https://doi.org/10.1093/ndt/gfu325
Tennant, P. W. G., Murray, E. J., Arnold, K. F., Berrie, L., Fox, M. P., Gadd, S. C., Harrison, W. J., Keeble, C., Ranker, L. R., Textor, J., Tomova, G. D., Gilthorpe, M. S., & Ellison, G. T. H. (2020). Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. International Journal of Epidemiology, 50(2), 620–632. https://doi.org/10.1093/ije/dyaa213
van Kampen, D. (2014). The SSQ model of schizophrenic prodromal unfolding revised: An analysis of its causal chains based on the language of directed graphs. European Psychiatry, 29(7), 437–448. https://doi.org/10.1016/j.eurpsy.2013.11.001
VanderWeele, T. J., & Shpitser, I. (2013). On the definition of a confounder. Annals of Statistics, 41(1), 196–220. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276366/
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. The American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108